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Sloppiness, robustness, and evolvability in systems biology
Bryan C Daniels1, Yan-Jiun Chen1, James P Sethna1, Ryan N Gutenkunst2

and Christopher R Myers3
The functioning of many biochemical networks is often

robust — remarkably stable under changes in external

conditions and internal reaction parameters. Much recent work

on robustness and evolvability has focused on the structure of

neutral spaces, in which system behavior remains invariant to

mutations. Recently we have shown that the collective behavior

of multiparameter models is most often sloppy: insensitive to

changes except along a few ‘stiff’ combinations of parameters,

with an enormous sloppy neutral subspace. Robustness is

often assumed to be an emergent evolved property, but the

sloppiness natural to biochemical networks offers an

alternative nonadaptive explanation. Conversely, ideas

developed to study evolvability in robust systems can be

usefully extended to characterize sloppy systems.
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Introduction
Robustness and evolvability are major themes in

systems biology, have been the subject of several recent

books and reviews [1–5], and have been discussed along-

side related phenomena such as canalization, homeosta-

sis, stability, redundancy, and plasticity [6,7,8��,9].

Broadly construed, ‘robustness is the persistence of an

organismal trait under perturbations’ [5], which requires

the specification of both traits of interest and pertur-

bations under consideration. Recent work in systems

biology has sought to distinguish between environmental

robustness (e.g. temperature compensation in circadian

rhythms [10,11,12�]) and mutational robustness (e.g.

parameter insensitivity in segment polarity patterning

[13,14]). Mutational robustness has a subtle relation to
www.sciencedirect.com
evolvability; while allowing survival under genetic

alterations, robustness might seem to reduce the capacity

for evolutionary adaptation on multigeneration time

scales [4,8��].

Earlier robustness work focused on feedback and control

mechanisms [15–20]. Much recent work emphasizes neu-

tral spaces and neutral networks: large regions in the

space of sequences, parameters, or system topologies that

give rise to equivalent (or nearly equivalent) phenotypic

behaviors. Neutral spaces have been explored most

extensively in the context of RNA secondary structure,

where large neutral networks of RNA sequences (geno-

types) fold into identical secondary structures (pheno-

types) [21–23,8��]. More recently, similar ideas have been

applied to neutral spaces underlying the robustness of

gene regulatory networks [24,25�,26], where different

network topologies (genotypes) can result in identical

gene expression patterns (phenotypes). Nontrivial niches

in sequence spaces are also seen to emerge in molecular

discrimination, a problem where neutral networks allow

for biological communication in the presence of uncer-

tainty akin to that found in engineered error-correcting

codes [27�]. Functional redundancies and degeneracies

arise at many levels of biological organization [28], and it

is an important open question as to how neutrality,

redundancy, and robustness at different levels are orga-

nized and coupled across scales.

Despite these advances in understanding neutral net-

works connecting genotypes in discrete spaces (e.g.

sequences), much of systems biology is focused on chemi-

cal kinetic networks that are parameterized by continuous

parameter spaces. Often one is interested in the steady-

state behavior of a dynamical system, or in the input–

output response relating only a subset of the chemical

species of a network. In principle, however, one must

characterize the full dynamical behavior of a network, in

part because any given network may be coupled in

unknown ways to other subsystems that are not included

in the model. To more clearly delineate distinct levels of

biological organization, we have chosen to refer the space

of continuous kinetic parameters as a ‘chemotype’ [29],

and to the full dynamical response of a system as its

‘dynatype’ (Figure 1). The chemotype-to-dynatype maps

of interest here are embedded within larger genotype-to-

phenotype maps, with chemotypes emerging from lower

level processes, and dynatypes contributing to pheno-

types and ultimately fitnesses on which selection acts.

Recently, there has been an increased interest in char-

acterizing the parametric sensitivity of the dynamics of
Current Opinion in Biotechnology 2008, 19:389–395
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Figure 1

Sloppiness in the mapping of chemotypes to dynatypes. It is natural, at

least for cellular regulation and metabolic networks, to refine the

traditional dichotomy of genotype G to phenotype P by adding two

intermediate levels of description, G!C!D!P. Here C is the

chemotype [29], a continuous description of the behavior in terms of

chemical reaction parameters (reaction rates, barriers and prefactors, or

Michaelis–Menten parameters). D is the dynatype, meant to describe the

dynamical responses of the cell (usually the time series of all species in

response to selected stimuli, often taken from experimental

measurements). Mutations about a particular chemotype u occupy a

region in chemotype space (here a circle of radius d), whose image in

dynatype space is given by the local Jacobian J of the mapping:

mutations along stiff directions in chemotype space will yield large

changes in dynatype, while mutations along sloppy directions will lead to

small dynamical changes. Conversely, a population of individuals

sharing nearly the same dynatype r (here a sphere of radius e) will

occupy a distorted region in chemotype space, with large variations in

reaction parameters possible along sloppy directions (gray ellipse).
biochemical network models, for two important reasons:

first, to probe system robustness by quantifying the size

and shape of chemotype spaces that leave system beha-

vior unchanged, and second, to characterize system beha-

vior and uncertainties for systems in which precise values

for rate constants and other kinetic parameters are typi-

cally not known.

Parameter estimation in multiparameter models has long

been known to be ill-conditioned: the collective behavior

usually cannot be used to infer the underlying constants.

Recent work has shown that these models share striking

universal features [30,31,32��,33], a phenomenon that we

have labeled ‘sloppiness’ (see Figures 1 and 2). Sloppi-

ness refers to the highly anisotropic structure of

parameter space, wherein the behavior of models is

highly sensitive to variation along a few ‘stiff’ directions

(combinations of model parameters) and more or less

insensitive to variation along a large number of ‘sloppy’

directions. A nonlinear least-squares cost function can be

constructed:

CðuÞ ¼
X

i

1

2

ðxðuÞ � xiÞ2

s2
i

¼
X

i

1

2
r2

i ; (1)

where ri ¼ ðxðuÞ � xiÞ=si is the residual describing the

deviation of a dynamical variable x from its measured
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values xi with uncertainty si. This cost reflects how well a

model with a given set of parameters u fits observed

experimental data. Parametric sensitivities of the model

are encoded in the Jacobian matrix J ¼ @r i=@u j . The

curvature of the cost surface about a best fit set of

parameters is described by the Hessian Hmn ¼
@2C=@umun (or its approximation, the Fisher Information

Matrix JTJ). Stiff and sloppy directions are conveniently

measured using an analysis of eigenvalues ln of the

Hessian H (Figure 3); large eigenvalues correspond to

stiff directions. For a broad range of multiparameter

models (e.g. 16 models drawn from the systems biology

literature [32��] and models from quantum Monte Carlo,

radioactive decay, and polynomial fitting [34�]) these

eigenvalues are roughly uniformly spread over many

decades, with many sloppy directions a thousand times

less well determined than the stiffest, best constrained

parameter combinations. Two consequences are that

useful model predictions can be made even in the face

of huge remaining parameter uncertainty, and conversely

that direct measurements of the parameters can be ineffi-

cient in making more precise predictions [32��]. Random

matrix theory can be used to develop insight into the

source of this type of eigenvalue spectrum and the nature

of redundancies that appear to underlie sloppiness [34�].
Our open-source code SloppyCell (http://sloppycell.

sourceforge.net) provides tools for exploring parameter

spaces in systems biology models [35].

Others have recently addressed similar questions related

to the lack of detailed information about kinetic

parameters. These include the inference of probabilistic

statements about network dynamics from probability

distributions on parameter values [36]; the use of ‘struc-

tural kinetic modeling’ to parameterize the Jacobian

matrix J and thereby probe ensembles of dynamical

behaviors [37,38]; the construction of convex parameter

spaces (‘k-cones’) containing all allowable combinations

of kinetic parameters for steady-state flux balance [39];

the use of ideas from control theory, worst-case analysis

and hybrid optimization to measure the robustness of

networks to simultaneous parameter variation [40]; and

exploration of correlated parameter uncertainties

obtained via global inversion [41].

Can we connect sloppiness to robustness and evolvabil-

ity? It is our contention that sloppiness — the highly

anisotropic structure of neutral variation in the space of

chemotypes — has important implications for how one

characterizes robustness in systems biology models. In

addition, insights developed in the study of robustness

and evolvability suggest new and potentially useful ways

of analyzing and interpreting sloppiness.

Environmental robustness and sloppiness
Organisms must thrive under many environmental con-

ditions: changing temperatures, salt concentrations, pH,
www.sciencedirect.com
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Figure 2

Sloppy parameter distributions: dependence on external conditions. Shown is a two-dimensional view of the parameter sets (free energy barriers and

prefactors) that accurately predict the experimental phosphorylation dynamics [11] in a 36-parameter subnetwork of a model of circadian rhythms

[12�], within a harmonic approximation (see Supplemental Material). Shown are parameters valid at three different temperatures (colors) and valid for all

temperatures simultaneously (black). The plot shows one ‘stiff’ direction in parameter space for each temperature which is tightly constrained by the

data, and one ‘sloppy’ direction which has relatively large variations without change in behavior. Most of the 34 other directions in parameter space not

shown are sloppy; the two-dimensional view was chosen to best align with the stiffest direction for each of the four ensembles. The black region

describes organisms that are robust to temperature changes in this range. The acceptable region rotates and shifts with temperature, but the

sloppiness allows different temperatures to intersect (robust temperature compensation) though all rates are strongly temperature dependent.

4 In the particular case of KaiC, we find that successful chemotypes

favor dephosphorylation in the active state and phosphorylation in the

inactive state (see Supplemental Material), so the thermally robust

solutions presumably increase the proportion of protein in the inactive

state as temperature increases, compensating for the general speedup of

all rates.
nutrient densities, etc. Many organisms have explicit

control mechanisms to keep their internal state insensi-

tive to these external changes — these control mechan-

isms (homeostasis, adaptation, etc.) have been a historical

focus in the robustness literature [15,43]. For variations in

temperature, however, many organisms do not have such

homeostatic control (with the exception of birds, mam-

mals, and some plants) and must instead cope with the

exponential Arrhenius temperature dependence of all

their reaction rates by some sort of compensatory mech-

anism [44].

The prototypical example of temperature compensation

is the 24-hour period of circadian rhythms [10]. Recent

experiments have succeeded in replicating the circadian

control network of cyanobacteria in the test tube using

three Kai proteins, whose degree of phosphorylation

oscillates with a temperature-compensated period in

the range of 25–35 �C. In addition, the phosphorylation

dynamics of KaiC alone is found to be unchanged as the

temperature varies in the same range [11]. This has been

cited as a plausible explanation for the observed tempera-

ture compensation in the full network, presuming that all

other rates are fast [12�] and hence irrelevant to the

period. (At least one other explanation of temperature

compensation [45] also relies on constraining most rates to

be irrelevant). Narrowing our focus to the KaiC phos-

phorylation subnetwork, however, still leaves the non-

trivial task of explaining its temperature compensation

mechanism, since estimated energy barriers [46] suggest

that phosphorylation rates should be twice as fast at the

higher temperature.
www.sciencedirect.com
The dynamics of KaiC phosphorylation has been mod-

eled using six phosphorylation sites and two confor-

mational states (active and inactive) [12�]. If each of

the 18 rates in this model roughly double between 25

and 35 �C, can we adjust the corresponding energy bar-

riers and prefactors such that the resulting net phos-

phorylation dynamics is temperature independent?

Figure 2 shows a two-dimensional view of the acceptable

parameter sets in the resulting 36-dimensional space of

energy barriers and prefactors, explored in the harmonic

approximation (see Supplemental Material). Notice that

the region of acceptable parameters rotates and shifts as

the temperature changes. Notice also that the system is

sloppy: Figure 2 shows one stiff direction that is highly

constrained by the data and one sloppy direction that is

largely unconstrained. The eigenvalue analysis in

Figure 3 confirms that most directions in parameter space

are sloppy and unconstrained. This provides a natural

explanation for robustness: the intersection of these large,

flat hypersurfaces yields parameters that work at all

temperatures.4 In general, each external condition pro-

vides one constraint per stiff direction; since there are

only a few stiff directions and many parameters in sloppy

models, robust behavior under varying external con-

ditions is easily arranged. Indeed, Figure 3 shows that
Current Opinion in Biotechnology 2008, 19:389–395



392 Systems biology

Figure 3

Sloppy-model eigenvalues. Shown are the eigenvalues of the approximate Hessian JTJ for the goodness-of-fit CðuÞ (Eqn 1) about the best fit. Large

eigenvalues correspond to stiff directions; others are sloppy. Notice the enormous range on this logarithmic scale; not all eigenvalues (ranging down to

10�20) are depicted.

� Columns KaiC 30 and KaiC All are for the KaiC phosphorylation dynamics model (Figure 2), showing T ¼ 30 � C (green region in Figure 2) and

simultaneous fits for all temperatures (black region). Notice that the ‘robust’ simultaneous fit has roughly one more stiff direction than the single

temperatures.

� The SP and SP PCA columns are for the segment polarity model [13,42]. SP is an eigenvalue analysis about one of the acceptable parameter sets, showing

parameters that keep the behavior (dynatype) of the entire network preserved (time series for all components under all experimental conditions). SP PCA is a

principal components analysis of the segment polarity ensemble that yields the wild-type phenotype, with parameters restricted to a relatively small range

(roughly three decades each). Most directions in SP are sloppy enough to have fluctuations larger than the sampled phenotype box in SP PCA; the sloppy

dynatype SP already explains the robustness to all but a few stiff directions in parameter space. Conversely, the sensitivity of the dynatype SP to a few stiff

directions does not preclude phenotypic robustness in those directions for SP PCA; the dynatype (all dynamical evolution) is far more restrictive than the

phenotype (output patterning).

� PC12 is for the EGF/NGF growth-factor signaling network [31,32��]; note that it too is sloppy. See Figure 4 for an analysis of evolvability and robustness for

this model.
the robust, temperature-independent fits for the KaiC

model are themselves a sloppy system.

Chemotype robustness and sloppiness
In addition to robustness to environmental perturbation,

biological networks are often robust to mutational per-

turbations; they maintain their function in the face of

mutations that change one or perhaps more of their

underlying rate parameters, and thus change their

location in chemotype space. Some authors have used

this as a criterion for judging model plausibility [47]. The

quintessential example of a system that is chemotypically

robust is the Drosophila segment polarity gene network.

Early in development, this network generates a periodic

macroscopic phenotype: a pattern of gene expression

across several cells that persists throughout development

and guides later stages. Multiparameter models of this

network [13,14,47,48] find that a surprisingly large frac-

tion of randomly chosen parameter sets generate a pattern

consistent with the observed patterning of three genes —

the system exhibits chemotype robustness.

In the context of sloppy models, we may define chemo-

type robustness as the fraction of a given volume in
Current Opinion in Biotechnology 2008, 19:389–395
parameter/chemotype space C that maps into a functional

region of behavior/dynatype space D (Figure 1). This

latter functional region represents behavior close to opti-

mum (or close to that measured experimentally). For

simplicity, let us consider it to be a hypersphere of radius

e (i.e. a cost CðuÞ ¼
P

r2
i =2< e2=2 in Eqn 1); larger

changes in behavior are considered significantly different,

perhaps lowering the organism’s fitness. The given

volume in chemotype space C might be (as for the

segment polarity network) a hypercube of parameter

ranges deemed reasonable, or (as a simple model of

mutations) a hypersphere; let its scale be given by d.

Our robustness is therefore the fraction of all points in the

d-ball in C that map into the e-ball in D — in Figure 1 the

fraction of the circle whose interior is colored gray. This

fraction can be calculated (see Supplemental Material)

and is approximately given by

Rc ¼
Y

ln > lcrit

ffiffiffiffiffiffiffiffi
lcrit

ln

r
; (2)

where l ¼ e2=d2. This formula can be motivated by
crit

considering the robust subregion (gray needle intersect-

ing the circle) to be a slab, with thickness e
ffiffiffiffiffi
ln
p

along the
www.sciencedirect.com
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Figure 4

Evolvability and robustness in a sloppy system. Evolvability distributions,

and evolvability versus robustness, for an ensemble of parameters for a

model of an EGF/NGF signaling pathway fitted to experimental data in

PC12 cells [32��]. The histogram on the left is the distribution of

individual/chemotype evolvabilities ecðF; uaÞ (Eqn 3), as F(an evolutionary

pressure in dynatype space) is randomly chosen in direction with

uniform magnitude and ua varies over the ensemble. The histogram on

the right is the corresponding distribution of population/dynatype

evolvabilities edðFÞ (Eqn 4). Note that the population evolvabilities are

significantly higher than the individual ones. The inset plots the RMS

individual chemotype evolvability EcðuaÞ versus the robustness RcðuaÞ
(Eqn 2) for the ensemble. (lcrit is chosen as the fourth-stiffest eigenvalue

at the best fit: see Supplemental Material). Note that, for each individual,

more robustness leads to less evolvability — individuals which rarely

mutate to new forms cannot evolve readily. This need not apply to the

population, insofar as we expect robust dynatypes to explore larger

regions of parameter/chemotype space, and thus the ratio of dynatype-

to-chemotype evolvability to increase with increasing robustness.
eigendirection corresponding to each eigenvalue ln.5 For

sloppy directions with ln < e2=d2 ¼ lcrit, the slab is

thicker than the circle and does not reduce the robust

fraction; for each stiff direction with ln > lcrit, the frac-

tional volume is reduced roughly by a factor of the slab

thickness e
ffiffiffiffiffi
ln
p

over the sphere width d, leading to Eqn 2.

In their model of segment polarity, von Dassow et al.
found that approximately 1 in 200 randomly chosen

parameter sets generated a wild-type expression pattern

for three key genes [13]. This would naively seem amaz-

ing for a 48-parameter model like theirs; in an isotropic

approximation, each parameter would be allowed only 6%

chance of changing the wild-type pattern (since

0:9448� 1=200). However, we have previously shown that

the segment polarity model is sloppy [32��]. That is, going

far beyond restricting the output phenotype, the dyna-

mical evolution of every component of the network is

approximately preserved even with huge changes in

parameter values: only a few stiff directions in chemotype

space are needed to maintain the dynatype (see column

SP in Figure 3). Sloppiness hence provides a natural

explanation for the wide variations in all but a few

directions in parameter space.

The success rate of 1 in 200 is not nearly as striking if the

dynamics is already known to be insensitive to all but

perhaps four or five combinations of parameters:

0:355 � 143� 1=200. Column SP PCA in Figure 3 fleshes

this picture out with a principal components analysis

(PCA) of the robust region seen in von Dassow et al.’s
original model, reconstructed using Ingeneue [42]. Note

that these PCA eigenvalues are cut off from below by the

parameter ranges chosen by the original authors for

exploration (typically three decades per parameter).

Although the overall scale of the dynatype sloppy-model

eigenvalues in SP and the phenotype eigenvalues in SP

PCA cannot be directly compared, it is clear that the vast

majority of sloppy-model eigenvalues are too small to

constrain the parameters within the explored region. The

model is robust in these directions not because of evol-

ution and fitness, but because of the mathematical beha-

vior of chemical reaction networks, which are naturally

weakly dependent on all but a few combinations of

reaction parameters.

Robustness, evolvability, and sloppiness
Mutational robustness of systems would seem to be at

odds with an ability to adapt and evolve, since robustness

implies persistence of phenotype or function, which may

inhibit the capacity for evolutionary change. The concept

of neutral spaces has been used — most notably by

Wagner and collaborators — to suggest a resolution of

this apparent paradox, as demonstrated in model systems
5 The cost for a small displacement of size Du along the eigendirection

n is lnDu2=2, which equals e2=2 when Du ¼ �e
ffiffiffiffiffi
ln
p

.
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exploring various genotype-to-phenotype maps

[8��,23,24,25�]. The important insight is that neutral

spaces and neutral networks enable systems to drift

robustly in genotype space (i.e. without significant phe-

notypic change), while encountering new and different

phenotypes at various points along that neutral space.

This insight results from a distinction between the

robustness and evolvability of any given genotype, and

the robustness and evolvability of all genotypes consist-

ent with a given phenotype [8��].

Evolvability is postulated to reflect the range of possible

different phenotypes that are possible under genotypic

mutation. How does the sloppy connection between

parameters and behavior impinge on the question of

evolvability? Translating previous work on discrete gen-

otype and phenotype spaces to the continuous spaces of

chemotypes and dynatypes is nontrivial. Since the dimen-

sionality of the space of chemotypes is less than that of

dynatypes, the volume of dynatype space accessible
Current Opinion in Biotechnology 2008, 19:389–395
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under changes in chemotype is zero; the volume in

chemotype space maps onto a ‘flat’ subspace in dynatype

space. To develop a sensible definition of evolvability in

such systems, we postulate forces F in dynatype space

(Figure 1) that reflect evolutionary pressures due to

changes in the environment, such that a change r in

dynatype leads to a change r � F in fitness. An organism’s

evolvability is related to its capacity to respond to external

forces through appropriate mutations in chemotype.

For a given force F, the maximum fitness change among

mutations of size d in chemotype space is given by

ecðF; uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FTJJTF

p
d (3)

which we call the chemotype evolvability distribution (see

Supplemental Material). Refs. [31,32��] generate ensem-

bles of parameters (chemotypes) consistent with a given

dynatype for an EGF/NGF signaling pathway in PC12

cells, where the dynatype is constrained to fit available

experimental data. (The PC12 network is sloppy, see

Figure 3.) Each member of such an ensemble ua has a

Jacobian Ja. As in Ref. [8��], which distinguishes between

genotype and phenotype evolvability, we can distinguish

between the chemotype ecðF; uaÞ and dynatype:

edðFÞ ¼ max ua
ecðF; uaÞ (4)

evolvability distributions. The first gives the distribution of

adaptive responses to F of individual chemotypes in a

population, while the second gives the optimal response

within the population. Figure 4 shows the chemotype and

dynatype evolvability distributions, generated using the

PC12 ensemble of Ref. [32��] and a uniform distribution of

force directions F in dynatype space. Within a population

sharing the same behavior, we find substantial variation of

accessible behavior changes, leading to a substantially

larger population (dynatype) evolvability than individual

(chemotype) evolvability. This echoes the finding of

Wagner that phenotype evolvability is greater than geno-

type evolvability for RNA secondary structures [8��].

It is natural to define an overall evolvability as the root-

mean-square average of the evolvability distribution over

a spherical distribution of environmental forces F in

dynatype space:

EcðuaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hecðF; uaÞ2i

q
F

(5)

and correspondingly for the overall RMS dynatype evol-
6 Unfortunately, we cannot reproduce Wagner’s final conclusion (that

phenotype evolvability increases with phenotype robustness), since our

ensemble (generated to match experimental behavior) is confined to the

single PC12 species (dynatype).
vability. The inset to Figure 4 shows that the chemotype

evolvability decreases as the chemotype robustness

increases, closely analogous to Wagner’s discovery that

genotype evolvability decreases as genotype robustness

increases, except that his plot averages over phenotypes

while ours represents variation within a dynatype. Thus

we reproduce Wagner’s observation [8��] that individual

evolvability decreases with robustness and that popu-
Current Opinion in Biotechnology 2008, 19:389–395
lation evolvability is significantly larger than individual

evolvability.6

Conclusion
Our previous work aimed at developing predictive sys-

tems biology models in the face of parametric uncertainty

has led us to formulate a theory of sloppiness in multi-

parameter models. The picture that emerges from this

theory is of a highly anisotropic neutral space in which

variation in parameters (chemotypes) can leave system

behavior (dynatypes) unchanged. This picture is remi-

niscent in many ways to the notion of neutral spaces and

neutral networks that has been developed to explore the

robustness and evolvability of biological systems. We

have been motivated by those ideas to here reconsider

sloppiness within that context, both to highlight implica-

tions of sloppiness for the study of robustness and evol-

vability, and to identify new methods for analyzing sloppy

systems.
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